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Abstract. We investigate numerically the temperature dependence of the London penetration
depth within the mean-field treatment of the interlayer pair tunnelling model for the copper oxide
superconductors. It is found that the assumption that the pair tunnelling is the dominant pairing
mechanism in YBCO (yttrium–barium–copper oxide) is not consistent with the experimental
results on this material. We also consider the Knight shift and the dynamic spin susceptibility
at a low temperature within the model. We find that the experimental results for these quantities are
consistent with a relatively small contribution of the interlayer pair tunnelling to the pairing channel
provided that, at least in the case of the dynamic susceptibility, the in-plane pairing produces a gap
of dx2−y2-wave symmetry which is non-zero within at most a few tens of meV off the Fermi line.

1. Introduction

Chakravarty, Sudbø, Anderson, and Strong proposed [1] the interlayer pair tunnelling (ILPT)
model as an alternative to the BCS (Bardeen–Cooper–Schrieffer) model for describing the
properties of high-Tc copper oxide superconductors. They used the ILPT model in calculations
of the Knight shift and the nuclear magnetic relaxation rates [2] and obtained results consistent
with experiments. In a previous work [3] we put their model into the Eliashberg form and
calculated the isotope effect and the effect of non-magnetic in-plane impurity scattering on
Tc. We obtained good agreement with experiments on YBa2Cu3O6+x for a reasonable choice
of microscopic parameters. At the same time, Yin, Chakravarty, and Anderson [4] used the
ILPT model to explain the appearance of a magnetic peak in neutron scattering experiments
on optimally doped YBCO below the superconducting transition temperature. They stressed
that dx2−y2-wave symmetry of the gap is essential for the appearance of a peak in the imaginary
part of the spin susceptibilityχ(Q, ω) at a wave vectorQ = (π/a, π/a, π/cb) belowTc (a is
the lattice spacing of the square CuO lattice, andcb is the distance between the layers within
a bilayer). Moreover, on the basis of their numerical calculations, they argued that such a
peak would be absent in the BCS model, and concluded that the pair tunnelling must be the
dominant pairing mechanism in copper oxides.

In this work we calculate theab-plane magnetic field penetration depth within the ILPT
model. The penetration depth measurements of Hardyet al [5] on single-crystal samples
of YBa2Cu3O7−δ provided the first strong evidence that the gap function1(k) has dx2−y2-
wave symmetry. Calculations within the BCS model [6] gave, after arbitrarily setting
21max(0)/kBTc to a large value of 6–8, good qualitative agreement with experiments. Clearly,
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it is important to find out whether the ILPT model can describe, at least qualitatively, the
temperature dependence of the London penetration depthλ(T ).

The rest of the paper is organized as follows. In section 2 we summarize the ILPT
model, give the expressions for the magnetic field penetration depth, and outline the numerical
procedures used in the calculations. Section 3 contains our numerical results for the in-plane
penetration depth as a function of temperature. In view of our results forλ(T ), we revisit the
frequency dependence of Imχ(Q, ω) at zero temperature which was studied in [4], as well as
the temperature dependence of the Knight shift belowTc [2]. In section 4 we give conclusions.

2. The model

In the interlayer pair tunnelling model the gap equation at a temperatureT for anN×N lattice
is given by [1–4]

1k(T ) = TJ (k)1k(T )
2Ek

tanh

(
Ek

2kBT

)
+

1

N2

∑
k′
Vk,k′

1k′(T )

2Ek′
tanh

(
Ek′

2kBT

)
. (1)

The first term in equation (1) arises from the pair tunnelling between the layers and is local in
k. The form ofTJ (k) proposed in [1] based on band-structure calculations [7] is

TJ (k) = t2⊥
16t

[cos(kxa)− cos(kya)]
4 (2)

wheret⊥ characterizes the high-energy single-electron coherent hopping from layer to layer,
and is estimated to be between 0.1 eV and 0.15 eV [1].t is the nearest-neighbour hopping
matrix element in the tight-binding model for the in-plane electron motion. The quasiparticle
energy is given by

Ek =
√
ε2
k +12

k (3)

whereεk is the tight-binding dispersion for the electron motion within a layer:

εk = −2t [cos(kxa) + cos(kya)] − 4t ′ cos(kxa) cos(kya)− µ (4)

andµ is the chemical potential.
The second term in (1) comes from in-plane pairing due to an instantaneous interaction

Vk,k′ . As in [4], we assume thatVk,k′ leads to dx2−y2-wave symmetry of the gap and take

Vk,k′ = Vgkgk′ gk = 1

2
[cos(kxa)− cos(kya)]2(�max − |εk|) (5)

whereV and�max are the magnitude and energy cut-off of the in-plane pairing interaction,
respectively.

Equation (1) was solved self-consistently at any given temperature below the super-
conducting transition temperature. In the pure interlayer tunnelling limit (V = 0) atT = 0
the solution is trivial [4], and is given as

1k(0) =
√(

TJ (k)

2

)2

− ε2
k2

(
TJ (k)

2
− |εk|

)
. (6)

Thus, for a givenk-direction1k(0) is non-zero only withinTJ (k)/2 off the Fermi line. We
used this solution as an initial guess for1k whenV > 0. Note that the in-plane pairing term
is non-local ink, and its contribution to1k is proportional togk for all k. Therefore, the
choice (6) for the initial guess does not force1k to be zero at a pointk at which the in-plane
interaction produces a finite gap. At finiteT we used for an initial guess the converged solution
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at a lower temperature. In this way we obtained highly converged solutions for lattices as large
as 1024× 1024.

The superconducting transition temperatureTc was obtained by viewing (1) as an eigen-
value problem whenEk = |εk| and finding the highest temperature at which the maximum
eigenvalue is 1. The maximum eigenvalue was determined using the power method [8]. We
found that our self-consistent solutions forT < Tc were in complete agreement with theTc
determined by solving for the maximum eigenvalue, in that1k did not converge at temperatures
exceedingTc. This consistency gave us confidence in the overall accuracy of our numerical
solutions.

Theab-plane London penetration depth is given by [9]

1

λ(T )2
= 4πe2

c2
2

1

(Na)2c

∑
k

v2
kx

[
δ(εk)−

(
− ∂f (Ek)

∂Ek

)]
. (7)

Here,e is the electron charge,c is the speed of light in vacuum,c is the size of the unit cell
along thec-axis,f is the Fermi function, and

vkx = 1

h̄

∂εk

∂kx
= 2ta sin(kxa) + 4t ′a sin(kxa) cos(kya) (8)

is thex-component of the band velocity. The term in (7) containing theδ-function arises
from the diamagnetic current density and is temperature independent. The term involving
−∂f (Ek)/∂Ek arises from the paramagnetic current density and is temperature dependent.
Its size increases as the temperature increases and atTc it completely cancels the diamagnetic
part. The evaluation of (7) seems to be straightforward once the solution1k(T ) is known.
However, since−∂f (Ek)/∂Ek is sharply peaked near the Fermi line, a lattice (i.e.N ) that
is not large enough will not yield an accurate value for the paramagnetic term, in particular
at low temperatures, because there are too fewk-points in the important energy range. We
found that a 64×64 lattice, which is commonly used in strong-coupling calculations involving
antiferromagnetic spin-fluctuation models for high-Tcs, does not give accurate results forλ(T ).
By comparing the values of 1/λ(T )2 obtained for 512× 512 and 1024× 1024 lattices we
concluded that these lattices give accurate results for the penetration depth above 10 K in the
case of the superconductingTc of 94.55 K.

The lattice size problems could be reduced by rewriting (7) as

1

λ(T )2
= 4πe2

c2
2

1

c

(
Nn
v (0)−

∫ ∞
∞

dE Ns
v (E)

(
− ∂f (E)

∂E

))
(9)

where

Nn
v (E) =

1

(Na)2

∑
k

v2
kxδ(εk − E) (10)

Ns
v (E) =

1

(Na)2

∑
k

v2
kxδ(Ek − E) (11)

and evaluating these weighted densities of states using the tetrahedron method [10] adapted to
a square lattice. While this method gave a vast improvement in 1/λ(T )2 calculated for smaller
lattice sizes, it gave the same results as the directk-summation method, equation (7), for a
512× 512 lattice above 10 K (Tc = 94.6 K). However, we found that even for the largest
lattice sizes considered, the tetrahedron method introduces a tiny gap inNs

v (E) for 1k with
dx2−y2-wave symmetry. Thus, we did not trust the accuracy of 1/λ(T )2 calculated at very low
temperatures and we present here only the results which could be reproduced by either of the
two calculational methods on a 512× 512 lattice.
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In conclusion of this section we point out thatv2
kx is not invariant under the transformations

from the C4v point group, and thereforev2
kx has to be replaced by(v2

kx+v2
ky)/2 when thek-sums

in (7), (10), and (11) are restricted to the irreducible wedge of the first Brillouin zone.

3. Numerical results

To fix the ideas, we choose the same band parameters as in [1–4], namelyt = 250 meV and
t ′/t = −0.45. Also, we take the same value for the chemical potential,µ = −315 meV, as in
[2, 4]. This value ofµ corresponds to a band filling factor ofn = 0.856. As in [2],�max was
fixed at 20 meV (the energy cut-off for in-plane interaction was not specified in [4]), and the
lattice size was fixed to 512× 512.

Next, we choose the parameters in the (t⊥, V )-plane, or (TJ , V )-plane, whereTJ = t2⊥/t ,
such that the superconducting transition temperatureTc is the same in all cases considered.
We find that fort⊥ = 104.62 meV (TJ = 43.78 meV) andV = 0, corresponding to the
case of an infinitesimal in-plane pairing, aTc of 94.55 K is obtained—a value comparable
to what is observed for optimally doped YBCO. In the opposite limit, whent⊥ = 0,
i.e. for no interlayer pair tunnelling, an in-plane pairing interaction ofV = 2442.15 meV
(λ ≡ N(0)V = 2.25,N(0) = 9.2× 10−4 states meV−1/(cell spin)) is needed to produce
the sameTc. The additional values oft⊥ considered were 100 meV, 70 meV, 50 meV, and
30 meV (i.e.TJ = 40 meV, 19.6 meV, 10 meV, 3.6 meV, respectively), and the corresponding
values ofV were 824.745 meV, 1790.65 meV, 2125.23 meV, and 2331.04 meV (i.e.λ = 0.76,
1.65, 1.96, 2.15), respectively. We note that without the interlayer pair tunnelling these values
of in-plane pairing interaction and�max = 20 meV give transition temperatures of 10.96 K,
61.3 K, 78.6 K, and 89.0 K, respectively. Thus, only for the two largest values ofTJ can one
say that the ILPT is the dominant pairing mechanism.

The results for the penetration depth are shown in figure 1 (for thec-axis lattice parameter
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Figure 1. The temperature
dependence of 1/λ(T )2 calcu-
lated for various values ofTJ =
t2⊥/t . The two largest values
of TJ give curves that have a
convex shape, which is not ob-
served experimentally [5].
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we tookc = 11.6802 Å [11]). Only the data obtained fort⊥ 6 70 meV resemble qualitatively
the experimental results of Hardyet al [5]. The values fort⊥ > 100 meV produce a convex
shape of 1/λ(T )2 which is not observed experimentally. Thus, our results suggest that a
scenario for superconductivity in YBCO in which the interlayer pair tunnelling is the dominant
[4] pairing mechanism cannot be correct. We note that if the calculated values in figure 1 are
linearly extrapolated toT = 0 K we findλ(0) ≈ 1100 Å—of the right order of magnitude for
YBCO [12].

To understand the difference in shape of the curves in figure 1 obtained in the large-TJ
limit (i.e. t⊥ > 100 meV) from those that were obtained for smaller values ofTJ it is necessary
to examine the temperature dependence of the gap function1k(T ). In figure 2 we show the
temperature dependence of the maximum gap1max(T ). It is interesting that the temperature
dependence of the maximum gap for the case of no in-plane interaction is essentially the same
as that which is calculated by M̈uhlschlegel [13] from the BCS theory for an isotropic s-wave
superconductor (the dotted line in figure 2, which was obtained by scaling the numerical results
of Mühlschlegel so that1(0) andTc agree with our numerical results). Clearly, the variation
of1max(T )with temperature cannot account for the difference in shape of the 1/λ(T )2 curves
in figure 1. However, the reason for the difference in shape can be deduced from figures 3–5
where the momentum dependence of the gap is plotted atT = 0 K, 50 K, and 94 K (just below
the critical temperature) forTJ = 43.78 meV, 40 meV, and 10 meV, respectively.1k(T ) is
more sharply peaked for smaller in-plane interactionV , and the relative sharpness increases
with increasing temperature. In the extreme case ofV = 0 (figure 3), the region ofk-space
in which1k(T ) 6= 0 decreases with increasing temperature. This should be contrasted with
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Figure 2. The temperature depen-
dence of the maximum gap calculated
for the same set of values ofTJ as
were used to obtain the curves in fig-
ure 1. The dotted curve (BCS) is ob-
tained by scaling the numerical results
of Mühlschlegel [13] for the BCS case
so that1(0) andTc agree with our nu-
merical results for zero in-plane inter-
action (TJ = 43.78 meV).
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Figure 3. The gap1k(T ) (in meV) as a function ofkx andky (the lattice spacinga of the square
CuO lattice is set equal to 1) forTJ = 43.78 meV. (a)T = 0 K, (b)T = 50 K, and (c)T = 94 K. In
the case of no in-plane interaction the gap collapses to eight sharp spikes just belowTc = 94.55 K.
The solutions in figures 3–5 were obtained for a 512× 512 lattice, but in order to obtain clear
graphs we show the solutions on a 256× 256 mesh.

the case whereTJ = 10 meV for which the larger in-plane interaction ensures that1k(T )

shrinks uniformly with increasingT . As a result, the cancellation of the diamagnetic term by
the paramagnetic term in (7) occurs over a larger region of momentum space whenTJ is large.
Since this cancellation is not complete until acommonTc is reached, 1/λ(T )2 must be convex
in the case of small in-plane pairing.

We note that the ratio 21max(0)/kBTc is 4.0, 4.9, 5.1, 4.9, 4.8, and 4.75 fort⊥ equal to
104.62 meV (V = 0), 100 meV, 70 meV, 50 meV, 30 meV, and 0 meV, respectively. In fact, is
easy to prove analytically that 21max(0)/kBTc is exactly 4 for no in-plane interaction as long as
the maximum in

√
[(TJ (k)/2)2 − ε2

k] is on the Fermi lineεk = 0,regardlessof the precise form
of TJ (k) andεk. These values of 21max(0)/kBTc are larger than the canonical BCS value 3.53
for an isotropic s-wave superconductor. At the same time, they are about a factor of two smaller
than what was obtained in the self-consistent studies [14, 15] of the two-dimensional Hubbard
model. The retardation and damping effects associated with spin-fluctuation-mediated pairing
suppress the value of transition temperature more than the zero-temperature gap, resulting in
an enhanced value of 21max(0)/kBTc. Since the interlayer pair tunnelling term is local in both
k and the Matsubara frequency iωn (see reference [3]), it is not expected that these retardation
and damping effects will change qualitatively the shape of 1/λ(T )2 in the case where the
interlayer pair tunnelling is the dominant pairing mechanism. Our preliminary results [16] on
a 64× 64 lattice for a model [17] of in-plane pairing via antiferromagnetic spin fluctuations
confirm this expectation.



The interlayer tunnelling model for HTS 9747

(b)

∆(k)

15

10

5

0

-5

-10

-15

kx

3

2

1

0

-1

-2

-3

ky

3

2

1

0

-1

-2

-3

(c)

∆(k)

2

1

0

-1

-2

kx

3

2

1

0

-1

-2

-3

ky

3

2

1

0

-1

-2

-3

Figure 3. (Continued)
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Figure 4. The gap1k(T ) (in meV) as a function ofkx andky for TJ = 40 meV at the three
different temperatures used in figure 3: (a)T = 0 K, (b) T = 50 K, and (c)T = 94 K. Note
that with a finite in-plane interaction,1k(T ) always has a component which is proportional to
gk = (V/2)[cos(kxa)−cos(kya)]2(�max−|εk|). Here�max = 20 meV andλ ≡ N(0)V = 0.76.

Since we find that the experimentally observed temperature dependence of the penetration
depth in YBCO is not consistent with the notion that the ILPT is the dominant pairing
mechanism in this material, which contradicts the findings in [2] and [4], we calculate the
Knight shift and the imaginary part of the spin susceptibility atT = 0 K for the parameters
used in figure 1 to further investigate the model. In [2] the Knight shift was calculated assuming
that the in-plane interaction yields s-wave symmetry of the gap. Our solutions for a 512×512
lattice, assuming dx2−y2-wave symmetry of the gap and using the same Fermi-liquid correction
parameterU = 2t as was used in [2] (see equation (8) in [2]), led to the temperature-dependent
Knight shifts shown in figure 6. As in the case of the penetration depth, the two largest values
of TJ give poor agreement with the experimental results (open and filled diamonds in figure 6)
[18, 19]. At the same time, the results obtained for the cases when the in-plane pairing is the
more dominant pairing channel are in reasonable qualitative agreement with the experiments.

At zero temperature the imaginary part of the spin susceptibility in the superconducting
state is given by [4, 9]

Im χ(Q, ω) = π 1

N2

∑
k

1

2

(
1− εkεk+Q +1k1k+Q

EkEk+Q

)
δ(Ek +Ek+Q − ω). (12)

In figure 7 we show our results for Imχ(Q, ω) calculated at the wave vectorQ = (π/a, π/a)
and at zero temperature for a 1024× 1024 lattice using the tetrahedron method [10]. The
larger lattice size was needed to avoid a spurious peak (single point) near the steep rise in Imχ

for TJ < 40 meV. While the two largest values forTJ yield the sharpest peaks, all the values
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Figure 4. (Continued)
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Figure 5. The gap1k(T ) (in meV) as a function ofkx andky for TJ = 10 meV. (a)T = 0 K,
(b)T = 50 K, and (c)T = 94 K. This value ofTJ is in the range where the size and the momentum
dependence of the gap are dominated by in-plane interaction. In this case, unlike the two cases
shown in figures 3 and 4 where the pair tunnelling dominates, the relative sharpness of the gap
function does not increase with increasing temperature.

of TJ , includingTJ = 0, produce peaks in Imχ(Q, ω). In fact, forTJ < 40 meV the peaks
are located near 40 meV as found in the experiments [20, 21]. In [20], the intrinsic width of
the magnetic peak was found to be at most 3 meV, while in [21], which had a slightly better
energy resolution (4.7 meV compared to 5.5 meV), the magnetic peak was found to extend
from 32 meV to 46 meV—a range comparable to what we find forTJ < 40 meV. Our results
for Im χ(Q, ω) for small values ofTJ contradict the findings in [4], in particular the claim
by Yin et al thatTJ = 0 produces no peak in the imaginary part of the spin susceptibility.
We found that theirTJ = 0 result is a consequence of their assumption that theTJ = 0 case
corresponds to1k = (10/2)[cos(kxa) − cos(kya)] for all k in the first Brillouin zone, as
indicated by the dash–dot curve in figure 7. Our result forTJ = 0 in figure 7 was obtained by
cutting off the in-plane interaction (i.e. the gap) at�max = 20 meV off the Fermi line. This
dependence of the shape of Imχ(Q, ω) on�max prompted us to question whether our results
for the London penetration depth, the Knight shift and the spin susceptibility would change if
we chose a different value for the energy cut-off of the in-plane interaction, since the choice
�max = 20 meV was rather arbitrary.

We recalculated 1/λ(T )2,K(T )/K(Tc), and Imχ(Q, ω) for TJ = 40 meV, 19.6 meV, and
0 meV using an energy cut-off�max = 200 meV (an order of magnitude larger) and values of
the in-plane interactionV that produce a superconducting transition temperature of 94.55 K,
as before. The corresponding values of V were 403.07 meV, 595.36 meV, and 696.5 meV,
respectively (i.e.λ = N(0)V = 0.37, 0.55, and 0.64, respectively). For both the penetration
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Figure 5. (Continued)
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Figure 6. The Knight shift normalized to its value atTc as a function of temperature for the values
of TJ used in figure 1. The experimental values (open and filled diamonds) were obtained for
YBCO for O(2, 3) [18, 19].

depth and the Knight shift we obtained virtually the same results as those in figures 1 and 6.
We explain this result by the fact that these quantities probe the gap1k(T ) only to within
aboutkBT off the Fermi line because of the factor−∂f (E)/∂E (see equation (7)). The size
and the shape of the gap in this energy range are determined by the requirement thatTc be fixed
and by the form ofTJ (k) and/or by the form ofVk,k′ (equation (5)). However, as illustrated in
figure 8, increasing the range of in-plane interaction from 20 meV to 200 meV has a dramatic
effect on Imχ(Q, ω) for TJ < 40 meV (i.e. for the case whenTJ no longer dominates and the
in-plane interaction becomes essential to produce a transition temperature of 94.55 K). The
fairly sharp peak in figure 7 which was obtained forTJ = 19.6 meV is substantially reduced by
increasing the range around the Fermi line in which1k 6= 0, and the peak in figure 7 obtained
for TJ = 0 and�max = 20 meV is completely destroyed by increasing the cut-off to 200 meV.
These results are in agreement with the argument given in [4] that the gap (of dx2−y2-wave
symmetry) has to be non-zero in a fairly narrow region around the Fermi line in order to obtain
a peak in Imχ(Q, ω) [4]. However, our results for the penetration depth and the Knight shift
assuming dx2−y2-wave symmetry of the gap rule out the scenario in which the narrowness of
the gap is a consequence of the fact that the interlayer pair tunnelling is the dominant pairing
mechanism in YBCO.

4. Conclusions

Our numerical results for the temperature dependence of the magnetic field penetration depth
and for the Knight shift show that the interlayer pair tunnelling cannot be the dominant
pairing mechanism in YBCO, at least within the mean-field-like description proposed in [1]
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Figure 7. The imaginary part of the zero-temperature spin susceptibilityχ(Q, ω) at the wave
vectorQ = (π/a, π/a) for the values ofTJ used in figure 1, except forTJ = 3.6 meV which
is nearly identical to the one obtained forTJ = 0 meV. The dash–dot curve was obtained for
1k = (10/2)[cos(kxa) − cos(kya)], 10 = 25 meV, forall k in the first Brillouin zone. The
energy cut-off of in-plane interaction is�max = 20 meV.

(see also [3] which extends the mean-field model to the case of time-dependent in-plane
interaction). While our results do not rule out the ILPT as an additional pairing channel in
copper oxide superconductors, they do clearly show that the in-plane pairing interaction must
play a significant role in these materials. The best agreement with the experimental results on
YBCO for the penetration depth, the Knight shift, and for the peak in the spin susceptibility at
a low temperature was obtained forTJ 6 19.6 meV, assuming that the contribution to the gap
from the in-plane interaction is significant only within a few tens of meV off the Fermi line.
We emphasize that these conclusions hinge on the mean-field-like description of the interlayer
pair tunnelling and in-plane interactions. It was pointed out in [1] that due to the locality in
k-space of the pair tunnelling contribution to the gap, one should expect the fluctuations to
play an important role whenTJ is large. In the opposite limit, i.e. in the usual BCS theory,
the number of pair statesk′ which interact with a given pair statek is large, and thus the
mean-field treatment is valid. The quantity 1/λ(T )2 is proportional to the helicity modulus
of a superconductor which measures the stiffness of the superconductor with respect to twists
in phase of the order parameter. Roddick and Stroud have shown [22] that phase fluctuations
in a nodeless order parameter can produce a low-temperature penetration depthλ(T ) which
varies linearly withT in an isotropic, three-dimensional superconductor. Thus, it would be
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Figure 8. The imaginary part of the zero-temperature spin susceptibilityχ(Q, ω) at the wave
vectorQ = (π/a, π/a) for the larger energy cut-off of in-plane interaction�max = 200 meV.
Only several representative values ofTJ from figure 7 are considered.

interesting to study the effects of fluctuations on 1/λ(T )2 within the ILPT model in the large-TJ
limit. We leave this problem to a future investigation.

Finally, we note that our results are consistent with several recent experiments [23–25]
which also conclude that the interlayer pair tunnelling cannot be the dominant pairing mech-
anism in high-Tc copper oxide superconductors.
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[18] Takigawa M, Hammel P C, Heffner R H, Fisk Z, Ott K C and Thompson J D 1989Physica162–164853
[19] Takigawa M, Hammel P C, Heffner R H and Fisk Z 1989Phys. Rev.B 397371
[20] Fong F H, Keimer B, Anderson P W, Reznik D, Doǧan F and Aksay I A 1995Phys. Rev. Lett.75316
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